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What are Gas Hydrates? TLsemes

* Crystalline solid consisting of gas molecules,
usually methane, each surrounded by a cage
of water molecules

* One volume hydrate typically equivalent to 160-
180 volumes methane gas

e Natural gas hydrate (NGH) is an
enormous global storehouse of organic

carbon.

* Methane is less carbon intensive fuel Methane, ethane,
than other hydrocarbon, 44% less CO2 GO CHEI:--
than coal, 29% less than oil, per unit
energy release.

* Methane is 20x stronger global
warming gas than CO,

Structure |

Propane, iso-butane,
natural gas....

Structure Il
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Gas Hydrate Stability Conditions TL sy
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Gas Hydrate Stability Conditions TL|sioisy

Explanation

180

North Pacific Ocean - Offshore relic permafrost
- Continuous permafrost (NSIDC)
PE RMAFROST |:| Greenland Ice Sheet (NSIDC)
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Gas Hydrate in Nature TL B

recently inundated shelves

X3
Potentially % g
Climate-sensitive ’

o
o

° ~350t0 600 m water depth (depending on bottom-water temperature) p
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Minimal Gas Hydrate °
(reduced gas supply) far offshore o ‘Seafloor
,, L N\—/ °, Mounds

-
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Hydrate-filled Massive hydrate  Grain-filling  Massive hydrate  Grain-filling Grain-filling
veins lenses hydrate sands sea-floor mounds hydrateinclays hydrate in sands
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The Gas Hydrates Resource Pyramid
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Distribution of huge in-

place resource

Arctic sandstones under

Data Sources

A: Collett, 1993; Collett, 1995

B: MMS, 2008

C: Unassessed (India, Korea expeditions)
D: Unassessed

E: Collett, 1995

U.S. DEPARTMENT OF

ENERGY

existing infrastructure (~10s of Tcf in place)

Arctic sandstones away from infrastructure (100s of Tcf in place)
Deep-water sandstones (~1000s of Tcf in place)

Non-sandstone marine reservoirs with permeability (unknown)
Massive surficial and shallow nodular hydrate (unknown)

| Marine reservoirs with limited permeability

(100,000s Tcf in place)

* increasing in-place

« decreasing reservoir quality

* increasing technical challenges
« decreasing % recoverable

GH-Saturated conglqm_g@ie X
NW Canada (Mallik) e

| 1L D TR TI | T LTV LT

T
29

6 27 28

Massive GH seafloor mound—
Gulf of Mexico




Alaska North Slope GH Assessment

N=
TL

e Discrete Accumulations
— Petroleum System

— The USGS method for
“conventional”
reservoirs

— Three AUs; with size
range and
accumulations
numbers for each

e ~85 TCF gas in place
e Technically Recoverable
e Existing Technology

— High ultimate tech
recoverability

U.S. DEPARTMENT OF
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Table 1. Alaska North Slope-Gas hydrate assessment results.

EXPLANATION
[ Northem Alaska Gas Hydrate TPS
—— Limit of gas hydrate stability zone

[BCFG. billion cubic feet of gas. MMBNGL, million barrels of natural gas liquids. Results shown are fully risked estimates. F95
represents a 95-percent chance of at least the amount tabulated: other fractiles are defined similarly. Fractiles are additive,

assuming perlect positive correlations. NGL, natural gas liquids; TPS, total petroleum system: AU, assessment unit. |

Northern Alaska Gas Hydrate TPS
(S}Z%aﬁi‘;‘;:’gorm“"“ Gas | 6285 10400 37701 20567 0 0 0 0
Tuluvak-Schrader Bluff-Prince
Creek Formations Gas Hydrate Gas 8,173 26,532 51814 28,003 0 0 0 0
AU

E;‘;f:g”ﬁgormam’“ Gias Gas | 10.775| 35008 68226| 36.857 0 0 0 0
Total Undiscovered

Resources 25,233 81,030 | 157,831 < 85,427 0 0 0 0
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In-Place Gas Hydrate in US OCS

I | |
-32° 96° 940 920

“MEAN GIP (&l litHologies)
21,444 TCF

MEAN GIP (sand-hosted)
15,785 TCF

Total in-place gas:
190 TCM (Mean)

-30° i
-28° A ® 0.008351 - 0.009090
® 0.009091 - 0.009900
@ 0.009901 - 0.010800
® 0.010801 - 0011600
-26° 2 © 0.011601 - 0.012400
‘ . @ 0.012401 - 0.013200

Sand-only mean © 0.003 0.012 - 0.021
0.013201 - 0.013900

hydrate gas volume (TCM) © 0.004 - 0.005 » 0.022 - 0.038

013901 - 0. T

© 0.000 0.006 -0.007  ® 0.039 —0.068 G:013901'=d.0:4700
r24 0.008 - 0.011 ® 0.069 - 0.156 - 0.014701 - 0.015600

0.015601 - 0.016700

0.016701 - 0.017900

BOEM—————————

BL“AU OF OC[AN EN(K.Y MA\M&“NY

@® 0.000111 -0.001790 0.017901 - 0.019000

® 0.001791 - 0.003320 0.019001 - 0.020100

ATL run 31
Volume Sand (TCM) ® 0.003321 - 0.004260
® 0.000000 ® 0.004261 - 0.004870

0.020101 - 0.021400

0.021401 - 0.022800

Table 1. BOEM in-place gas hydrate resource volumes for
the Atlantic, Pacific, and Gulf of Mexico Outer Continental
Shelf. Units are trillion cubic feet; 7 x 10°? ft°. Resource
volumes have not been subject to geologic risk.

In-Place Gas Hydrate Resources
: Region Gas (Tcfg)
95 M 5
Mean Vol (TCM) 0.0017 - 0.0029 0.0114 - 0.0207 1 26 can 26
Vol_Mean 0.0030 - 0.0046 0.0208 - 0.0377 = — = Atlantic OCS 2,056 21,702 52,401
0.0000 0.0047 - 0.0069 0.0378 - 0.0682 Pacific OCS 2,209 8,192 16,846
0.0001 - 0.0016 0.0070 - 0.0113 0.0683 - 0.1555 Gulf of Mexico OCS 11.112 21 444 34.423
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US National Gas Hydrate Program
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Program Mission

* Determine the potential for methane hydrates as an
energy source,

* Identify environmental impacts associated with
production, and it’s role in the global climate cycle.

* Interagency & International

* Gas Hydrate In Nature

* Science And Technology

* QOutreach & Education

* Emphasis On Research In The Field

Near-term Goals (2020)

¢ Demonstrate long-term Technical Recoverability (Alaska)
* Confirm Gulf of Mexico Resource Assessment
¢ Continue International Collaborations

Long-term Goals (2025)

Confirm scale of US resource base (+ Atlantic)
¢ Demonstrate Production Approach (Alaska + International)

* Develop consensus view on GH/Climate linkages
via field programs + modeling

. DEPARTMENT OF

ZUSGS

science for a changing world

BOEM

8‘_-‘1) o o(lA\ Eh‘"m MANMS(WENW

AN INTERAGENCY ROADMAP FOR
METHANE HYDRATE RESEARCH
AND DEVELOPMENT: 20152030

Pepancly
The Techuical Coordination Team
of the Nations! Methane Hydrate R&D Progras

QO FT s & oy

o2 30036200

An Interagency Roadmap
=N for Methane Hydrate

Research and Development

Realizing the

ENERGY POTENTIAL

o METHANE HYDRATE
= for the United States



http://www.nsf.gov/
http://www.blm.gov/nhp/index.htm

DOE - NETL GH Program
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Major Program Areas

Marine Resource Characterization / Confirmation

e Marine drilling and coring programs throughout US OCS

e Focus on major drilling/logging/coring field effort in GoM with UT

Production Science
e Evaluating behavior of GH in response to induced change
e Focus on establishment of long term GH production test in AK

Fundamental Science

e Fundamental scientific efforts in geophysics, experimentation,
simulation, tool development and other areas to support scientific
understanding necessary for resource characterization, exploration and
production of GH

e Conducted with Academia, National Labs and other Federal Agencies

GH Role in the Natural Environment

e Investigate, through the acquisition of field data and development of
predictive models, the nature of hydrate response to warming climates
and implications for ocean and atmospheric chemistry.

e Conducted with Academia, National Labs and other Federal Agencies

International Collaborations

.S. DEPARTMENT OF

Seafloor
mound/seep

Thick Onshore
Permafrost

Shallow
Arctic Shelf

Feather Edge of
Stability

Deepwater

ATMOSPHERE:
photolytic CHy
oxidation

Ice Sheet
(cold base)

thermokarst o
ake % ACTIVE LAYER:

shallow methanogenesis

gas hydrate
breaking down

METHANE POPULATIONS
® young microbial gas
+ old microbial gas

© thermogenic gas
Ruppel and Kessfer (2017) # released from gas hydrates (microbial or thermogenic)




——|NATIONAL

GOM?2 Expedition: UT Austin TL sy

Pressure-coring at known sites and exploration of high-value new sites

Expedition —1 (Completed Spring 2017)

* Single site, two-hole, test of pressure corer, core
transfer and core analysis. 20 deployments.

* Full science program (UT, DOE-NETL, USGS,

G e Ote k) drate Saturation
 Two bit configurations (PCTB) tested: (PCTB-CS: Y
6% Rec., PCTB-FB: New tool design: 75% Rec) rE
* All 20 sample transfer vessels filled with very a0
high-quality hydrate-bearing sand samples ool t . |
 NO SAFETY INCIDENTS, NO WELL CONTROL RE . / e BT Ya)
INCIDENTS, ON TIME, ON BUDGET ; | Y= i :;_‘ 7
e Core to undergo analysis by multiple research 8™ s A EE! ::i:: |
groups: UT, USGS, NETL, AIST - (AR -RRAN]
14007—— = }\ f :f, 1 t;: Qé
i [ f \’; 1 TAC-;; j
T SRR EEEERIH
el S

Muds or fine sands with patential modest Sp
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Green Canyon 955 TL s

Reservoir Architecture confirmed at Core Scale

UT-GOM2-1-H005-5FB

GC955-H i " g
RESERVOIR ARCHITECTURE fmgfpl"a’;w — § Gamma Density (g/em?) Pwave Velocity (mis)  X-ray
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Expedition-1: Post Expedition Science TLEssies

Pressure Core Characterization Tools (US); NETL Laboratories

ouploga|  (UT-COM2-1-HO0-037 Full Characterization of Pressure Cores
| — ‘23 - * Index-level Properties: grain size, porosity, Sh
= - AN . : :
| — St stored * Hydraulic-Mechanical Properties:
=l resams
:_ = E * Consolidation, volume compressibility,
™o § o Vertical/horizontal permeability, acoustic wave
- semspec velocity, modulus, strength, water retention curve
T =1 e * High Resolution Visualization of hydrate pore
i _q% habits
T - {; : . .
o 1— — . i Pressure Core Characterization Tools
e é = * Retrieve, transfer, cut, subcore, and
—— =22 =) characterize naturally-occurring hydrate-
s - s it bearing sediments at in situ P/T conditions
: = =shll] et

3FB-4 SEOL
(Micro-CT) 30 cmy
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Pressure Core Characterization Tools TECHNOLOGY

Transport
Chamber

Manipulator w/
temporary storage
chamber

Effective Stress
Chamber

CT scanning
chamber

Sub-corer Transfer Assembly
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Visualization of Hydrate Pore Habit TLJSass

Phases Separated

Non-destructive CT imaging
High resolution (1pm)

Phase separation in 3D reconstructed
images

Further physical properties analyses

With hydrate
Pore fluid replaced Hydrate.
' a7 . o b4




GOM?2 Expedition: UT Austin
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Pressure-coring at known sites and exploration of high-value new sites

Expedition —2 (2020)
* Logging, MDT, and pressure coring at multiple sites.

e Scheduled for FY20 from Joides Resolution as IODP
CPP 386 (approved by IODP May 2017),
collaboration with IODP, TAMU, and the NSF.

e ~60 days of ship time

* Conducted within the IODP structure:
* Access to world’s premier scientific drilling vessel
* |ODP cost contribution, staffing, and liability
coverage
* |ODP scientific and safety reviews/approvals

Core twins of 2009 JIP WR313 G&H Holes
e Gas and fluid chemistry; GH Habit; Microbiology
* Reservoir and Seal Petrophysics

.S. DEPARTMENT OF
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Alaska Long Term Production Test TLJsiossy

Goals

* Understand behavior of GH system in response to induced change over
prolonged period (6 mo. Minimum)

* Evaluate technologies and approaches for initiating and maintaining flow

Alaska North Slope represents ideal test bed:

* Geologically well-characterized (complimented as needed by project
strat/sci test wells)

* Hydraulic isolation (away from sources of free gas or water)

» Sufficient reservoir temperature (at least 5C) and intrinsic reservoir
quality

* Multiple reservoir zones — operational risk mitigation and expanded B
science options

* Well location that allows continual operations of 6 mo (minimum);
optimally18-24 mo.

* Location that minimizes interference with ongoing operations
* Non-disruptive gas/water handling
* Minimal complexity — avoid use of unproven technologies

Key Test components

* Depressurization — pre-set or steady rates — enable scale to commercial
* Flow assurance - ability to maintain wellbore during likely interruptions
* Sand control -
* Progressive well stimulation available — thermal, mechanical, chemical

§
j
i
E

]

Depth, In feet below sea level

\U\.MJWMN%"\ o]
i &

§ BT o
e AR Sdasi ) i
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Field Program Planning TLSooss

Three Wells and Two Phase Program

* Phase 1: Conduct stratigraphic test and complete as
monitoring well

~100 0 401 (TED|

« Phase 2: Establish facilities; drill & instrument science | PR SRR L
well; drill, complete and conduct test in production test
Kugan 1-11-12
well c
Stratigraphic Test Well S i ol
- aeta) AD 1 00 D
 To Confirm state of GH a Site - 3 l f
* To allow selection of test zone and finalization of scienc " e i i PR
well and production well completion design n ‘ s o
= 0P oW IdavedWreine
* Goal is fully saturated GH in B sand = - S ——tnig
* Fall-back is fully saturated D sand. 5k www:’_ .
Geo-Data Well e
« To acquire all geologic, engineering, petrophysical data - bt 1_:; - g
needed to characterize the test reservoir and effectively - |- -+t - %,;,G;H;m%g -
interpret test results “ }\ G
Production Test Well B
* Completed for production and monitoring over extendeu
period

* Sand control completion
* Well intervention pre-positioned

S. DEPARTMENT OF




N NA'I'IONAL
-

Geologic Input Models: B-sand T |ciorocy

LABORATORY

JOGMEC Simulation Input Summary

Porosity, - Gas Hydrate Saturation, - Free Water Saturation, - Bound Water Saturation, - iniual eErmecuve Ferm., mu INUMASIC FErm., mu
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Code Comparison:

Difference on gas/water rate predictions.

Comparing initial/boundary condition,
mesh, relative permeability functions,
thermal conductivity, pore compressibility

Main gap maybe resulting from relative
permeability functions (B&C vs. Masuda)

No laboratory/field data to directly
estimate parameters for relative
permeability functions

Progress on developing common
conditions and parameter sets to share

Agreed gas/water flow rates to be used for
planning test design and operation
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Gas Production Rate, Mscf/day
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Code Comparison Study
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(s COMPARISON

J == STUDY

* 5 Countries
e 21 Institutions
e 12 Codes
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Code Comparison Study
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* Objective of Code Comparison Study:

* Check modeling concepts and approaches
on newer hydrate reservoir simulators

* Compare fundamental capabilities of
codes, specific processes or models with
propetly designed problem sets

* Share new ideas and approaches
* Link experiments, field tests, and
modeling

* New Focus on IGHCCS2

* modeling coupled thermal, hydrological,
and geomechanical processes and the
effects on the production

Problem Set to be solved..

$

Hydrate Dissociation from
IGHCC1 Problems

Terzaghi’s Problem with
Hydrate Dissociation

Nankai Trough Hydrate
Production

Coupled Geomechanics with
Radial Flow Problems

$

More to come.....
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* Enabling the realization of the
Nation’s methane hydrates resource
potential, through:

* Improved understanding of the
fundamental behavior of hydrates, both
in sitn, and during man-made
disturbances.

* Development of predictive modeling
codes that accurately describe gas
production, responsive ground
deformation, and environmental impacts.

* Laboratory characterizations that support
numerical simulations by providing
accurate input data on physical properties
of hydrate.
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